Tag 4 Inhaltsverzeichnis

- Normalformen
 - Problem
 - Formen (1-4)
 - Weitere Formen
- Transaktionen
 - Synchronisationsprobleme
 - Überblick
 - Deadlocks
- Übungen
- BYOQ

Normalformen Problematik

BuchTitel	ISBN	Autorl	Autor2	Verlag
Datenbanksysteme	123	Kemper	Eickler	Oldenbourg
MySQL5	456	Kofler	"null"	Addison-Wesley
Linux	789	Kofler	"null"	Addison-Wesley

Anomalien

- Einfügung
- Update
- Löschen

Zum Beispiel

- Einen dritten Autor beim DB-Buch addieren
- Autor Kofler oder Verlag AW anpassen

Normalformen 1_NF, vorher

- Jeder Datensatz mit Primärschlüssel identifizierbar
- Jedes Attribut der Relation muss einen atomaren
 Wertebereich haben, und die Relation muss frei von
 Wiederholungsgruppen sein.

BuchTitel	ISBN	Autor	Verlag
Datenbanksysteme	123	Kemper, Eickler	Oldenbourg
MySQL5	456	Kofler	Addison-Wesley
Linux	789	Kofler	Addison-Wesley

Normalformen 1_NF, Zwischenresultat

- Jeder Datensatz mit Primärschlüssel identifizierbar
- Jedes Attribut der Relation muss einen atomaren
 Wertebereich haben, und die Relation muss frei von
 Wiederholungsgruppen sein.

BuchKey	BuchTitel	ISBN	Autor	Verlag
0	Datenbanksysteme	123	Kemper	Oldenbourg
1	MySQL5	456	Kofler	Addison-Wesley
2	Linux	789	Kofler	Addison-Wesley
3	Datenbanksysteme	123	Eickler	Oldenbourg

Redundanz eingeführt... => es braucht mehr Tabellen!

Normalformen 1_NF, nachher

- Jeder Datensatz mit Primärschlüssel identifizierbar
- Jedes Attribut der Relation muss einen atomaren Wertebereich haben, und die Relation muss frei von Wiederholungsgruppen sein.

ID	Titel	ISBN	VerlagID
0	Linux	123	1
1	MySQL 5	4567	2
2	Datenbanksysteme	9876	3

ID	Verlag
1	Addison-Wesley
2	PrenticeHall
3	Hanser

ID	Vorname	Name
1	Michael	Koffler
2	Alfons	Kemper
3	André	Eickler

AutorID	BuchID
1	0
1	1
2	3
3	3

Normalformen 2_NF, vorher

- 1_NF
- Wenn jedes Nichtschlüsselattribut von jedem Schlüsselkandidaten voll funktional abhängig ist.
 >=> Jedes nicht-primäre Attribut (nicht Teil eines Schlüssels) ist vom gesamten Schlüssel abhängig, nicht nur von einem Teil davon

1_NF Tabellen mit **nicht zusammengesetzten** Schlüsseln *sind* automatisch in 2_NF

Normalformen 2_NF, nachher

- 1_NF
- Wenn jedes Nichtschlüsselattribut von jedem Schlüsselkandidaten voll funktional abhängig ist.
 Jedes nicht-primäre Attribut (nicht Teil eines Schlüssels) ist vom gesamten Schlüssel abhängig, nicht nur von einem Teil davon

CD Lieder

CD_ID	Albumtitel	Interpret	Jahr der Gründung
4711	Not That Kind	Anastacia	1999

CD_ID	Track	Titel
4711	1	Not That Kind

Hier hat man die Tabelle CD_Lieder in zwei Tabellen zerlegt

Normalformen 3_NF, vorher

- 2 NF
- Kein "Nichtschlüssel" Attribut hängt von irgendeinem Schlüsselkandidaten transitiv ab.

Ein Attribut A ist vom Schlüsselkandidaten C *transitiv* abhängig, wenn es ein Attribut B gibt, so dass $(C \rightarrow B)$ *und* $(B \rightarrow A)$.

CD

CD_ID	Albumtitel	Interpret	Jahr der Gründung
4711	Not That Kind	Anastacia	1999
4713	Freak of Nature	Anastacia	1999
4712	Wish You Were Here	Pink Floyd	1964

A

Normalformen 3_NF, nachher

- 2_NF
- Kein "Nichtschlüssel" Attribut hängt von irgendeinem Schlüsselkandidaten transitiv ab.

Ein Attribut A ist vom Schlüsselkandidaten C *transitiv* abhängig, wenn es ein Attribut B gibt, so dass $(C \rightarrow B)$ und $(B \rightarrow A)$.

CD Künstler

CD_ID	Albumtitel	Interpret
4711	Not That Kind	Anastacia
4713	Freak of Nature	Anastacia
4712	Wish You Were Here	Pink Floyd

Interpret	Jahr der Gründung	
Anastacia	1999	
Pink Floyd	1964	

Hier hat man die Tabelle CD in zwei Tabellen zerlegt

Fachhochschule

Gilles Maitre

Normalformen 4_NF, vorher

- 3_NF
- Vierte Normalform (4_NF)
 (es darf nicht mehrere, voneinander unabhängige,
 1:n-Beziehungen in einer Relation geben)

Besitz

Personnummer	Haustier	Fahrzeug
1	Katze	∨olkswagen
1	Katze	Ferrari
1	Pelikan	Volkswagen
1	Pelikan	Ferrari
2	Hund	Porsche

Normalformen 4_NF, nachher

- 3_NF
- Vierte Normalform (4_NF)
 (es darf nicht mehrere, voneinander unabhängige,
 1:n-Beziehungen in einer Relation geben)

Haustier

Personnummer	Haustier
1	Katze
1	Pelikan
2	Hund

Fahrzeug

Personnummer	Fahrzeug
1	∨olkswagen
1	Ferrari
2	Porsche

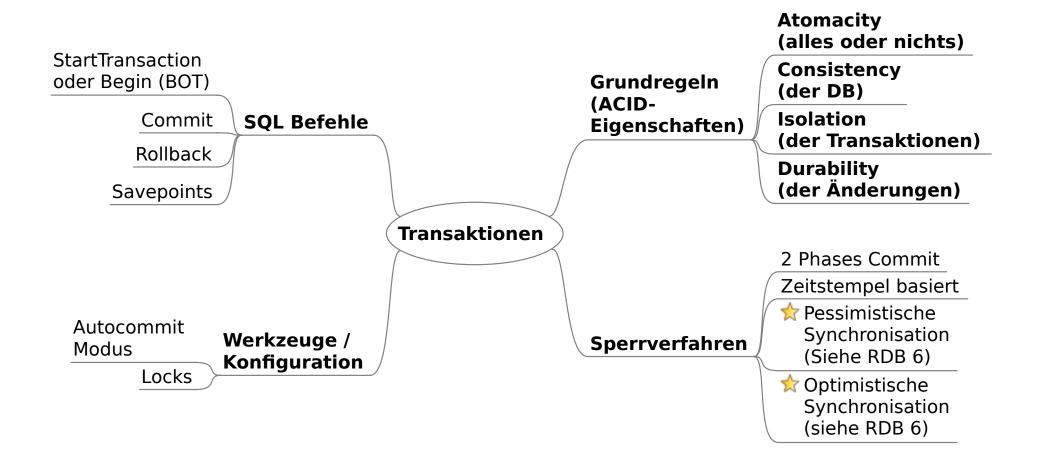
Normalformen Weitere Formen

- 1_NF
- 2_NF
- 3_NF
- Boyce-Codd-Normalform (BC_NF)
- 4_NF
- 5 NF
- 6_NF

Transaktionen Definition

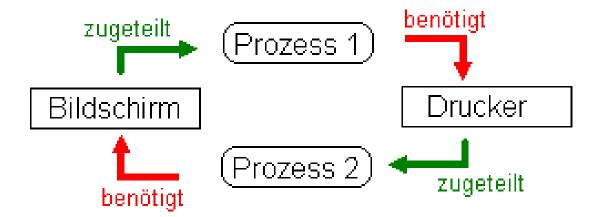
- Reihenfolge von zusammengehörigen Operationen
- Für Datenbank, Kontoüberweisung, etc...
- Wechsel zwischen konsistenten Zuständen
- Muss ACID-Eigenschaften erfüllen (Definition folgt)

Transaktionen Beispiel "Verlorene Updates"


Zeit

Programm 2
Programm 2 liest das Konto X
Programm 2 ändert Konto X und schreibt den neuen Stand

Die Aktualisierung von Programm 1 ist verloren gegangen


Transaktionen Überblick

Dmod 4 - 15 Version 1.1

Transaktionen Deadlocks

- InnoDB-Treiber erkennt es => im letzten Prozess
 - Fehler
 - Rollback der Transaktion
- "innodb lock wait timeout=n", Default 50 Sek.

Dmod 4 - 16 Version 1.1

Übungen

1) Normalisieren Sie diese Datenbank mit den bekannten Normalformen.

```
Artikel: { Name, Typ, Herstellername, Herstelleradresse }
Lieferant: { ID, Name, Strasse, Stadt, Kanton, Land }
Lieferung: { ID, LieferantID, ArtikelName, Menge, PreisProMenge }
```

